If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+12m-8=0
a = 1; b = 12; c = -8;
Δ = b2-4ac
Δ = 122-4·1·(-8)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{11}}{2*1}=\frac{-12-4\sqrt{11}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{11}}{2*1}=\frac{-12+4\sqrt{11}}{2} $
| 3x-4+5x-8=9-3x+1-4x+8 | | M=1.5v=0.027 | | 5(4-z)=30 | | x/0.1=1.1 | | b-3/5=12 | | 6x^2+16x=2 | | 2x²+5x=3 | | 2(2114-y)+3y=5450 | | 550=12x-(4.25x+655) | | 5(2k+3)-7k=21 | | f^-1(2)=2/(2-5(2)) | | 180=2x+4×4 | | f-1(2)=2/(2-5(2)) | | 1024^n=64 | | 4.905t^2-14.79t-13=0 | | -11(-7x+2)+6=7(x-1) | | X/4=2+x-3|3 | | x/6=x/7(-10) | | 0.16(y-9)+0.18y=0.10y-1.8 | | y/4=7+3 | | f(2)=2/(2-5(2)) | | (2x-5)(4-2x)(8+x)=0 | | f(2)=2/2-5(2) | | 1x-10=-7x+14 | | 4(5e+2)=38 | | 4q+7=10 | | 3x5^x=9 | | 2x2+8x=—11 | | -7(v+4)+4v+6=6v+8 | | (4x+5)2=61 | | (3x+20)+(4x+50)=180 | | (3x+20)+4(x+50)=180 |